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RELIABILITY-BASED FAILURE ANALYSIS OF BRITTLE MATERIALS

ABSTRACT

by

Lynn M. Powers and Louis J. Ghosn

The reliability of brittle materials under a generalized
state of stress is analyzed using the Batdorf model. The model
is modified to include the reduction in shear due to the effect
of the compressive stress on the microscopic crack faces. The
combined effect of both surface and volume flaws is included.
Due to the nature of fracture of brittle materials under compres-
sive loading, the component is modeled as a series system in
order to establish bounds on the probability of failure.

A computer program was written to determine the probability
of failure employing data from a finite element analysis. The
analysis showed that for tensile loading a single crack will be
the cause of total failure but under compressive loading a series
of microscopic cracks must join together to form a dominant

crack.
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CHAPTER I

INTRODUCTION

The demand for high-temperature structural materials
has increased due to the growth in the aerospace, defense
and energy related industries. Because of the attractive
physical and mechanical properties of modern ceramics:

high-temperature strength, lightweight, excellent erosion,

corrosion and wear resistance, and low thermal conductivity,

ceramic components are being considered for structural
applications. Examples of these high-temperature
applications include: turbine engine components, rocket
nozzles and nose tips, nuclear fuel pellets and bearings.
As is the case for other brittle materials, ceramics
exhibit a large variation in fracture stress which must be
taken into account in design. This variation in strength
results from the presence of microscopic random
imperfections or flaws. Ceramic components contain two
types of flaws: volume flaws and surface flaws. Volume
flaws arise from material processing while surface flaws

arise from grinding and other surface finishing operations.



Most of the probabilistic approaches to brittle
fracture are formulated for tensile failure.1 However,
brittle materials react distinctly under different loading
conditions.2 These materials tend to be weak in tension,
but strong in compression. This behavior would suggest that
two different failure mechanisms govern the fracture of
brittle materials when in tensioﬁ or in compression. The
purpose of this research was to develop a probabilistic
model to determine the reliability of brittle materials
accounting for the two mechanisms of fracture and which may
be applied to any given loading condition, in particular
contact stress conditions where the stresses are

predominately compressive.

A. Reliability Theory

BReliability is given as the probability of an object
performing its required function for a specific period of
time under stated conditions. When considering the failure
of materials, reliability is measured as the ability of a
component to sustain load. The statistical nature of
fracture may be presented in two different theories: the
weakest link and bundle models.3 These two concepts are
illustrated in Fig. 1.

The weakest link theory makes the analogy between the
links of a chain and the volume elements of a bulk specimen.
The strength of the chain is that of its weakest link, the

strength of the bulk specimen is that of its weakest volume



SERIES SYSTEM — WEAKEST LINK MODEL

PARALLEL SYSTEM — BUNDLE MODEL

Fig. 1.1 System configuration.



e1ement.4’5 The strength of its weakest volume element is
characterized by its most severe crack. The weakest link
theory implies that when one crack fractures the entire
specimen fails, representative of a series system.

The alternate concept is that of a bundle model or a
parallel system.6 The volume elements within the material
are composed of links arranged in parallel. When one of the
links fails, the load is redistributed and the structure may
survive. Failure is defined when all of the links have

failed.

B. Probabilistic Models For Brittle Fracture

The probabilistic models to be considered are those
concerned with the instantaneous fracture as a result of
unstable crack propagation when an initial load is applied.
Fast fracture of structural components is generally assumed
to depend on some property of the material from which the
part was made. It is assumed that brittle materials contain

microcracks which are uniformly distributed and randomly

oriented.

The probabilistic models for brittle fracture are based
on the weakest link concept, because one crack almost always
produces total failure in tension. The first of these was
introduced by Veibu11.4’5 Weibull assumed that the
component of stress normal to the plane of the crack was the
only one to contribute to its fracture. As a result the

shape of the crack is irrelevant and crack-crack interaction



is not taken into account. The statistical distribution

function was given as

g - o
o> 0 P, =1 - exp - I [——————] dv 1.1
u f v 7,
o £ o, =0

where the probability of failure, Pf, is a function of the
maximum principal tensile stress and three material
constants: m, % and Ty the Weibull modulus, scaling factor
and the threshold stress, respectively. A similar
distribution for surface flaws may be written by integrating
over the area instead of the volume. An example of this
probability distribution is shown in Fig. 2. This theory
was initially used for materials under uniform tension and
was extended7 for non-uniform uniaxial stress states.

The flaw density distribution characterized by the
material constants in the Weibull analysis may be difficult

to determine.8

A unique combination of values for the
three parameters does not exist within the range used for
experimental data, 0.05 < Pf < 0.95. For a single data set
the difference between various fits will be small in this
range but large in the extrapolated region at the lower tail
of the distribution where the probability of failure
necessary for design is located. For simple stress states

the distribution of flaws may be obtained without assuming

any functional form.? Matthews’ theory was extended for
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Fig. 1.2 Veibull’s distribution function.



biaxial configurations by Evans.10 However for multiaxial
states of stress, a flaw density distribution must be
extrapolated for untested regions.11

To further apply Weibull theory to polyaxial states of
stress, the Principal of Independent Action (PIA) was
developed.12 The PIA hypothesis states that the probability
of survival is equal to the product of the survival

probabilities for each of the three principal stresses

individually. The probability of failure is given as:

o.M 0ol Oy
R R N R R i e
v o o (o)

where 015 0o and gq are the principal stresses. This method
will yield unconservative estimates of stress because all
nonzero principal stresses contribute to the stress normal
to the plane of the flaw.13
The Batdorf model,14 accounts for this by including a
stress space integral inside of Weibull’s volume/surface
integral. Batdorf’s assumption that these flaws are cracks
will combine Weibull’s statistical model with fracture
mechanics theory. Material failure is now associated with
crack growth. Since both normal and shear stresses
contribute to crack growth, an appropriate fracture
criterion is needed to account for combined loading.15 The

presence of shear reduces the normal stress needed to

produce fracture.



This occurs when the stress on the crack reaches a
critical value which is a function of the fracture criterion
and the crack configuration. Two of the mixed-mode fracture
criteria which have been used in combination with the
Batdorf model are the maximum tensile strength and the

16

strain-energy release rate, for volume cracks and for

surface cracks.1?
Arbitrarily stressed components may be analyzed by
dividing them into small volumes of material whose stress
state is assumed constant. Stress analysis using the finite
element method is compatible with this model to determine

the failure probability.18

C. Brittle Fracture In Compression

In general, the models mentioned thus far do not
include the effect of compressive normal stresses on the
crack. However, Griffith introduced the idea that brittle
materials fracture in compression. In a material containing
pre-existing cracks, the unequal principal compressive
forces generate shear stresses which act against frictional
forces producing tensile stresses near the crack tip.19 The
crack branches nearly parallel to the direction of maximum
compression. This secondary crack will grow until the
tension at the crack tip has dropped to the applied
compression.20 This effect is illustrated in Fig. 3.

Since the existing cracks are microscopic, a single

crack does not produce total failure as it almost always
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Fig. 1.3 Crack growth under compressive loading.
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does in tension. Total fracture occurs when several of
these cracks extend and join together creating a shear
fault.21 Compressive failure is dependent on the total flaw
distribution not on the weakest flaw alone.22 Using the
weakest link concept, initiation of fracture of a single
crack has been predicted,23 for specific stress states

however, crack interaction was not considered.

D. Thesis Qutline

The purpose of this study is to model the behavior of
brittle materials under arbitrary loading conditions. This
program uses data from a finite element analysis to
determine the probability of failure originating from volume
and/or surface flaws. Due to the nature of the fracture of
brittle materials under compression, the component is
modeled as a series system in order to establish bounds on
the probability of failure. When the material is
represented in this manner crack-crack interaction is taken
into account.

In Chapter II, the Batdorf model for failure prediction
in tension is presented. The material is assumed to contain
a distribution of uniformly distributed and randomly
oriented cracks. The failure strength of a material with
pre-existing cracks is determined from experimental data
using the 4-point bend test.

In Chapter III, the modified Batdorf model for

compressive loading is developed. The reduction in shear
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due to the effect of the compressive stress on the crack
face is included in the analysis for volume and surface
flaws.

The calculation of the bounds on the probability of
failure is described in Chapter IV. An element is
equivalent to a component in the system. Determination of
the probability of failure for an element is shown based on
the stress output from the finite element analysis.

In Chapter V, the model is applied to determine the
probability of failure for contact stress problems. The
thesis concludes with Chapter VI, where the results and
conclusions of the study are presented. The needs for

future research are given.




CHAPTER II

FRACTURE PREDICTION

The failure of brittle materials has been attributed to
the presence of flaws. The material fails when the strength
of the weakest flaw is exceeded. These flaws were assumed
to be cracks whose strength was dependent on their size and
orientation.14 Batdorf assumed that these cracks were
uniformly distributed and randomly oriented as shown in
Fig. 2.1. The material will fail when the effective stress
on a crack reaches a critical value Ocr characteristic of
that particular crack. To determine the effective stress
L the shape and the fracture criterion must be assumed.

Two of the mixed-mode fracture criteria which have been
used with the Batdorf model are the maximum tensile strength
and the strain-energy release rate. The strain-energy
release rate was selected for this analysis because of its
greater degree of shear-sensitivity. The effective stress

applied on a crack is given as:16

12
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ON AN ISOLATED MICROCRACK

\ \ \\\

A // (:::7//”” NORMAL AND SHEAR STRESSES
\ ~

N

Fig. 2.1 Random crack distribution in brittle materials.
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c =\l + 7T 2.1

for a Griffith crack, where o

n is the macroscopic temnsile

stress normal to the plane of the crack and 7 is the shear
parallel to it. A crack will fracture when the effective
stress is greater than the critical stress. In the 0,7
plane eq. 2.1 is a boundary outside of which a crack will
initiate fracture. This boundary is referred to as the

fracture envelope.

A. Surface Flaw Analysis

When a crack is lying on the surface of a material, it
is assumed that stresses present only at the surface
contribute to its growth. As a result the crack is
subjected to plane stress conditions. The two principal

stresses on the surface are 7y

a and 034> because they will

represent the maximum and minimum principal stresses on the
plane. The stress perpendicular to the surface will not
effect the growth of surface cracks, however it is included
in the volume flaw analysis. The subscript a implies a
surface quantity.

To determine the probability of failure, the surface is
divided into elements. Within each element the stress state
is assumed constant. The probability of failure for surface

cracks may be expressed24 as:
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Pfa = PlaP2a 2.2

where Pla is the probability of existence in the element of
surface area of a crack having a critical stress in the

range o, to o, _ + dac

cr cr and P2a is the probability that a

T
crack will be oriented so that the effective stress is

greater than or equal to the critical stress. Pla has the

form

dN_(7.)
_ a\“cr
1a = 04 —do__ do., 2.3

P

where AA is the area of the element and Na(acr) is the
surface crack density function which is defined as the
number of cracks per unit area having a critical stress

greater than or equal to ¢ The crack density function is

cr’
material dependent and is assumed to be

i
where kBa and m, are determined experimentally.
P2a is given as:
_=-_ w
P2a = Ww = m 2.5

where w is the radian measure of the angular range in the

quadrant of stress space within which the effective stress



is greater than or equal to Ocr- The total angular range in

this region is g. Vhen o 2 o, over the entire range,
then w = g. If Cogq < Ocr everywvhere, then w = 0. The

probability that a crack will be oriented so that Oea 2 Oer>
is 0 £ Poo < 1.

The overall probability of failure is:

g
1a dN_(co. )
P, =1 - exp J dA I —2_ I T do__ 2.6
A 0 Ccr

for the entire area A. The limits on the integration of Ocr
are a consequence of the assumed crack density function and
the stress state. When hcr < 0 the quantity Pla as given in

eq. 2.3 is equal to zero. P2a is zero if Oor 2 94a because
the effective stress is never greater than O1a when all of
the principal stresses are tensile.

When the crack density function is known, the only
quantity needed to calculate the probability in eq. 2.6 is
w, a function of the stress state and the fracture

criterion. For a crack on the surface of the material, the

fracture criterion given in eq. 2.1 is stated as;

o = |o + T 2.7

where Ooq 18 the effective stress acting on a surface crack

and Tna and T, are the normal and shear stresses on a crack.
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The magnitude of the traction vector |aa|, is:

‘2 2

| o = alacos2ﬂ + 03Zsin2ﬂ 2.8

a
where f is the angle between the Ula-axis and the crack
normal.

The normal and shear stresses are respectively given

as:

_ 2 . 2
Tha = 91C0S g + 73,8in B 2.9
2 )
Ty = Jlaa| - Oha 2.10

Substituting eqs. 2.9 and 2.10 into eq. 2.7 gives an
expression for the effective stress,
2

2 2 2 2
Oen = O35 + (045-035)c0s B 2.11

oc._ 2 o over the range 0 £ < 8

cr 2 %ea then

cr?

1/2

'BCI' = COS 0.—2_7-2 2.12
la 3a

Since w = Bcr



w=1 7cri93,
0 0 1/2 2.13
=2 cos! cr ~ 73a 0o . <0 Lo
- 2 2 3a"cr-"1la

Fig. 2.2 shows the angle w as a representation of the arc of
Mohr’s circle outside the fracture envelope as given in

eq. 2.7.

B. Volume Flaw Analysis
Within an element of volume whose stress state is

assumed constant, the probability of failure may be

written:24

va = PlvP2v 2.14

where P1v is the probability of existence in the element of

volume of a crack having a critical stress in the range Ocr

to o + dac

cr and P2v is the probability that a crack will

r

be oriented so that the effective stress is greater than or
equal to the critical stress. The subscript v will be used
to define volume quantities. P1v has the form

dNV(acr)

1v =AVT—d0'cr 2.15

Ccr

P

where AV is the volume of the element and N,(¢..) is the

crack density function which is defined as the number of
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OBa 2&)\/ Ucr Ula

Fig. 2.2 The angle w represented by the arc of Mohr’s
circle outside the fracture envelope.
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cracks per unit volume having a critical stress greater than
or equal to Tre The crack demsity function is material

dependent and is assumed to be

n
N =k v 2.16

v Bvcr
vhere ka and m  are determined experimentally.

P2v is given as:

N
P = = - 2.17

2v
where ! is the solid angle on a unit sphere containing all

of the orientations for which o The overall

ev 2 Pcr-
probability of failure is:

(/8
iv dN_(o,. )
- _ v\icr
va—l—exp[ Idvj —a ﬁdacr] 2.18

\'4 0 Ccr

for the volume V. The limits on the integration of 0., are
similar to those used in eq. 2.6. The only quantity needed
to calculate the probability of failure is I, a function of
the stress state and the fracture criterion. For a crack

inside the volume of material, the fracture criterion given

in eq. 2.1 is stated as:

o = |o + T 2.19
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where 0o, 18 the effective stress acting on a volume crack

and L. and T, are the normal and shear stresses on the
crack.

A normal to the plane of the crack is defined as shown
in Fig. 2.3, in principal stress space where
74y < Ty < 03, @ is the angle betveen the normal and the
azv-axis and f is the angle between the normal and the

vlv—axis in a plane perpendicular to the intermediate

principal stress. The direction cosines are

l =8in a cos 8
m = COS a 2.20

n = sin a sin S

The magnitude of the traction on the plane is:

2 2,2 2 2 2.2
|av| = alvl + og m° + oggn 2.21
the normal and shear are
_ 2 2 2
Ty = alvl + 0y 7+ ogom 2.22
_ 2 2
T, = J[avl - oy 2.23

Substituting eq. 2.20 into eq. 2.21

2 2

|a&|2 = 033 + (013-033)sin a cos2ﬂ + (a23-a33)cos a 2.24
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2v 3v

Fig. 2.3 The orientation of the normal to a crack plane in
principal stress space.



23
and similarly fof the normal stress in eq. 2.22

2

. 2 2
ooy = O3, * (04,-93,)8in"a cos™f + (09,-03,)cos"a 2.25

Originally,14 P2v was determined in the following
manner. The fracture criterion in eq. 2.19 may be stated

using the traction vector
Ty = |0yl 2.26
then eq. 2.24 is of the form

a62 +bd+c=0

where 6 = coszﬂ, then

a=0
b = (013-033) sin“a
c = (023-033) cosZa + 033 - ”cz

Using the quadratic formula, 6 is determined. Let

B = cos-lv § then

T
= % I B sina da 2.27
0



24

If §<0, B= g which indicates that the effective stress is

greater than or equal to o, everywhere for the angle a.

cr

Also if 6§ > 1, B =0 or oy < 0o €verywhere for the angle

a.

The calculation of P2v in eq. 2.27 is simplified if two
planes tangent to the unit sphere at A and B are defined as
shown in Fig. 2.4. Their normals are

=3 o . .
n, =sin ¢ i+ cos e j B =0

2.28
-
n

B

cos a j + sin a k g = 7/2

where i, j and k are the unit vectors in the %1v? Tov and

O3y directions, respectively. The traction on A and B

2 2 2 2 2
|oy|” = o4, - (o045,-05,)cos"a
2.29
2 2 2 2 2
|ogl™ = o5, + (a2v-a3v)cos a
then the traction as given in eq. 2.24 is written:
2 2 2 2 2
o 1% = Jogl® + (Jou|™ - |og|")cos™B 2.30

The normal stresses on A and B are



o ALONG AB
o IS CONSTANT

Fig. 2.4 The location of points A and B on a unit sphere
in principal stress space.
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%nh = 91y - (044709 )cose

2.31
O n =09 + (0o, -0 )cosza
nB = "3v 2v "3v

and the normal stress on any plane is:

o =0nqn+ (0 ,-0 )cos2ﬂ 2.32
nv nB nA “nB :

P2v may be determined by substituting eq. 2.30 into
eq. 2.26

2 2 2 2 2
oy = |0B| + (|0A] - |aB| )cos ﬂcr 2.33
then
-1 aci } |UB|2 V2
By = cos 2.34
cr 2 2
l”ll : l”h’
where .. is a function of o¢__, |o,|, |og] and implicitly a.

Eq. 2.34 is similar to eq. 2.12 for surface cracks. As was

the case for surface cracks, o, 2 0. over o £ 8 < ﬂcr’ or

ev cr

w = ﬁcr' Eq. 2.27 may be written:

/2 _
Nl = I v sin a da 2.35
0

where
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w=0 | o, | < Tcr

o ek ]

w = 2 cos ) — logl < 0., < |oy] 2.36
logl”™ - |ogl

w=1 Oer < |ogl

where |o,| and |opg| are given by eq. 2.29 as a function of
a. The region inside Mohr’s circle of stress which lies
outside the fracture envelope represents orientations within
which a crack must lie to initiate fracture as shown in

Fig 2.5. An example of the solid angle 2 on a unit sphere

is shown in Fig. 2.6.

C. Determination DOf Material Parameters

The crack density functions, Na and Nv’ contain two
constants which must be determined experimentally. A plot
of the probability of failure versus the fracture stress is

made from the data and is fitted to:
Pp =1 - exp [ -ka}‘] 2.37

where g is the fracture stress, k and m are determined
using the least squares method.

Given a fracture theory, an expression for the
probability of failure can be found which is a function of
the specimen geometry and loading conditions. This

expression is used in combination with eq. 2.37 to evaluate
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Fig. 2.5 Orientation of cracks which will initiate fracture
on Mohr’s circle of stress.



29

O
1v
A
L |
fEE
B
7\ N
~
~ ~N
B o
CT£3\7 3v

Fig. 2.6 Solid angle within which cracks must be oriented
to initiate fracture on a unit sphere.
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the material parameters. Ideally, a uniform tension test
would be the easiest to formulate. However, this test is
not popular because the ceramic tensile specimens are costly
and their load train is not easily aligned. The four-point
bend test has become the preferred test because it can be
controlled and the stress field is uniaxial but not uniform.
The test configuration is shown in Fig. 2.7 for a beam with
a circular cross-section.

The stress distribution in the beam as a function of

the maximum tensile stress is given by

20
0'='(-Lo—_%—:—3){—RXI'Sin0 OSXS (LO-L]..)/2
“max .
o=—— T sin ¢ (L,-L;)/2 <Cx £ (L+Ly)/2  2.38
o = “max (L -x) r sin @ (L+L.)/2 < x <L
- IEO-Eii E ‘o o i i

where R is the radius of the bean, L0 is the distance
between the outer loads, Li is the distance between the
inner loads and O nax is the magnitude of the maximum tensile
stress in the beam. o = o between the inner loads and at
0 = %. Since the magnitude of the tensile stresses and the
compressive stresses are equal, the beam will most likely

fail in tension.



Fig. 2.7 A beam of circular cross-section with four point
loads.



1. Surface Flaws

For a uniaxial state of stress with T1a = 7> and
O3, = 0 the probability that a crack will be oriented so the
effective stress is greater than or equal to the critical

stress is:

o
w = % cos'1 [ £r } 2.39

o
o dN_(s,..)
Pf =1 - exp [ -J J 2 cost [ Cr] a_cr d”cr dA } 2.40

If it assumed that when Oy = 0, then Na = 0, eq. 2.40 is
integrated by parts and substituting eq. 2.4 into eq. 2.40

m
a

7 2kBaacr
A O r{o “Ocr

Let

then
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ky o 2
P, =1-exp|:-I B: ZdAJ 2.42

where

5]
7= I n 2 {1-0}'1/2 dn 2.43

beam

) ZkBaa
P, =1 - exp IJ —Ba__p ax a¢ 2.44

and substituting eq. 2.38 into eq. 2.44 gives an expression
for the probability of failure in terms of the specimen
geometry and the loading conditions
m
ZRkBa(Lo+maLi) o

: I

= max . a

Pfa =1 - exp - (m_+1) J sin® 6 dé 2.45
0

The constants kBa and m, are determined by equating the

exponents in eq. 2.45 and eq. 2.37

m =nm 2.46
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r(m_+1)k
_ a
kBa = 2.47

T m
ZR(L +m_L.) IO sin? ¢ dé

where Onax 18 the fracture stress, g

2. Volume Flaws

For a uniaxial state of stress with Oiy = O» and
Toy = I3, = 0 the probability that a crack will be oriented
so the effective stress is greater than or equal to the

critical stress can be computed directly18

a

=1 - €T
=1 z 2.48

substituting eq. 2.48 into eq. 2.10

4
o dN_(o.)
1 ) _cr v\Zcr
va =1 - exp { J f [1 - ] do__ d”cr dv } 2.49
CcTr
P, =1 - B v gy 2.50
gy =1 - exp @,+1) -
\'

Integrating eq. 2.50 over the tensile portion of the

beam
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o ka m
va =1 - exp ‘J J J. W r dx dr dé 2.51
0O 0 O

and substituting eq. 2.38 into eq. 2.51 gives an expression
for the probability of failure in terms of the specimen

geometry and the loading conditions

m
kg, (Lo+vai) 12 Uma; T m,
Pey=1-exp | - 5 J sin’ 6 dg| 2.52
(m,+1) " (m_+2) 0

The constants kg and m, are determined by equating the

exponents in eq. 2.52 and eq. 2.37
m_=m 2.53

m_+ 2 m_+
kB ( D7« 2) . 2.54

Y (L +n L) B2 J V.9 de

where Opnax 1S the fracture stress, -

D. Numerical Integration

When the stress state and the crack density function
are known, the probability of failure may be calculated.
However, numerical integration is necessary to compute the
failure probabilities as given in eqs. 2.6 and 2.18. To

evaluate these integrals the Gaussian quadrature method is



36

used. The integration of an arbitrary function over a

finite interval may be approximated by

N
b
J f(x) dx = Eéé 2 f[xi[béa] + a;b] LA 2.55

a

where N is the number of sampling points, e 9 and w, are the
location and weight of the ith sampling point, respectively.
These values X5 and W, are tabulated for different numbers
of sampling points.25
The probability of failure for surface cracks is more

efficiently computed24 if
S = -StL 2.56

then substituting eq. 2.4 into 2.6 gives:

m, (1 _ m-1
Pfa =1 - exp -AmakBao1a JO w Sa dSa 2.57

where w is given by eq. 2.13 or as given by eq. 2.36 where

|”A| =04, and |aB| = 0g,- Applying eq 2.55 to the integral

in eq. 2.57 gives:

W 2.58
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where

Di is evaluated at ¢, and x, and w; are tabulated
i i
according to the number of sampling points used.
A similar process is utilized to evaluate the
probability of failure for volume cracks as given in

eq. 2.18. If
§ = & 2.59

then substituting eqs. 2.59 and 2.16 into eq. 2.18 gives:

-1

m,7/2 (1 _ m,
va =1 - exp -vakaalv JO JO w sin a Sv dSv da| 2.60

vhere w is given by eq. 2.36. Applying eq 2.55 to the

integral in eq. 2.60 gives:

mv
-xVm ka 1v

IIM‘Z
LA
[
[ 8]
/)]
-
=
72N
"2 .Y
H
]
[y
t »
E o
—

3,

va =1 - exp [

where



w.. is evaluated at £, and (j. X, » W5, X: and w. are
i

1) i J J
tabulated as a function of M or N.

It is of interest to note that for both volume and
surface analysis the probability of failure is dependent on
a common function, w. Therefore in the subsequent analysis
of compressive stress states, it is not necessary to
consider both volume and surface probabilities but to
formulate w so that it may be used in both eq. 2.58 for
surface probability and in eq. 2.61 for the probability of

failure for an element of volume.



CHAPTER III

FRACTURE INITIATION UNDER COMPRESSIVE LOADING

Brittle materials with pre-existing cracks may fracture
when loaded in compression.21 The unequal principal
compressive stresses generate shear stresses which act
against frictional forces, initiating local crack growth.
Since the existing cracks are microscopic, a single crack
does not produce total failure as it almost always does in
tension. Total failure occurs when several of these cracks
extend and join together. Before the failure of an entire
component can be analyzed, the fracture of a single crack
must be considered.

When the stress normal to the crack plane is
compressive, the shear and the friction due to the normal

stress will act against one another23

Te = | 7| + poy 3.1
where Te is the effective shear stress on the crack and y is
the internal friction coefficient of the material. Te is
defined as the shear stress necessary to initiate fracture

39
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when the normal stress is less than zero.26

The criterion given in eq. 3.1 is combined with the
strain-energy release rate criterion in eq. 2.1. Te must be
equal to the value of the effective stress as given in
eq. 2.1 when o, = 0, in order to preserve continuity in
shear. Then the fracture criterion for g, <0 is stated:

0o = Tg = |T| + noy 3.2
The fracture envelope in shown in Fig. 3.1. Failure
probabilities are based on the combination of the two
criteria as were given in eqs. 2.1 and 3.2.

To accomodate the new fracture criterion, two
modifications are made to the Batdorf model as presented in
Chapter II. First, the maximum effective stress T emax’ is
not always equal to the maximum principal stress as it did
when all of the principal stresses were tensile, resulting
in a change in the limits on the integration of Oer in
eqs. 2.6 and 2.18. Second P2 the probability that the
effective stress is greater than or equal to the critical
stress, must be reformulated.

The subscript notation used in this and subsequent
chapters will not include a reference to a surface or volume
flaw analysis. For example, the quantity N refers to both

Na the surface crack density function and Nv the volume

crack density function.
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A

Fig. 3.1

Fracture envelope.
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A. Maximum Effective Stress

In order to calculate the effective stress exceeding
the critical stress P2, the effective stress for all crack
orientations must be considered. VWhen the critical stress
is greater than the maximum effective stress, P2 = 0. In
terms of the fracture envelope shown in Fig. 3.1, O¢ = Tomax
when Mohr’s circle of stress is tangent to the fracture
envelope. The orientation of the normal to the plane on
which T emax acts must lie in the 13-plane.

The maximum effective stress is characterized

differently depending upon the nature of the stress on the

element.

1. Compression - Mohr’s circle is tangent to the linear
portion of the fracture envelope

2. Tension - The maximum effective stress is equal to
the maximum principal stress.

3. Tension and compression combined - A transition

region where o is equal to the shear stress when

emax
only shear is present.

The limitations of each of these three methods will be
discussed in order to develope a general algorithm for the

determination of the maximum effective stress.
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1. Compression

Mohr’s circle is tangent to the linear portion of the
fracture envelope when the effective stress given by eq. 3.3
is a maximum. The normal and shear stresses in the 13-plane

are:

g, = —5— + —7— Cos 28
3.3
gy-0
i7] = _l§_§ sin 243

where B is the angle between the crack normal and the
al-axis. The effective stress in the 13-plane is given by

substituting eq. 3.3 into 3.2

fo = —5— sin 28 + u — + —35 cos 288 3.4

To determine where ¢ is located, one must find the

emax
orientation where the slope

8ae ]
;E— = (0y-03) cos 2f - p (01-03) sin 24
is equal to zero. Solving for 8 = ﬁﬁax’ at o, = o . one
obtains
tan 28 =1 3.5
max 4
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which is a function of the internal friction coefficient.
Mohr’s circle is tangent to the fracture envelope at the

point where 8 = as shown in Fig. 3.2. For the limiting

'Bma.x

case u =0, o

— ’- L] - .
emax OCCUrS at ﬂmax = s which is the location

of the maximum shear stress.
A general expression for Cemax ©30 be found from
eq. 3.5, given by:

. 1
sin 2ﬁmax =
1+ u
3.6
- .
cos Qﬂmax =
1+ pu
substituting eq 3.6 into eq. 3.4 gives:
g -0 O +0
_ 1793 17793
Cemax = {1+ H —3— + 4 —5— 3.7

Since 74 2 03, the first term in eq 3.7 is always greater
than or equal to zero. However o, < 0 for all G, then

o +03<0. If o . < 0, the frictional force along the
crack is greater than the shear and all cracks under these
loading conditions are locked. For example, under
hydrostatic pressure og = 04 < 0, no shear is present. This
phenomenon also takes place near the orientation of

compressive principal stresses.

For any stress state whose maximum effective stress is
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A

Fig. 3.2 The maximum effective stress as Mohr’s circle is
tangent to the linear portion of the fracture
envelope.
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less than or equal to zero, cracks will always lock. The
probability of failure for these regions is always equal to
zero, therefore they may be eliminated from the overall
analysis. This is done by considering the ratio of minimum

to maximum principal stress:

when o4 < o, <0, B 2 1 because the magnitude of oq is

greater than or equal to the magnitude of ¢ When

1-
Cemax = 0> R = RO then from eq. 3.7
2,1/2
(1+x2)1/2 &

= 3.8
O @)% -y

Fig. 3.3 shows the crack locking region in the o7 plane
with Mohr’s circle at R = RO.

Ro as a function of the internal friction coefficient
is shown in Fig. 3.4. If 1 < R < R, the maximum effective
stress is less than zero and all cracks will lock. The
elements whose principal stress ratio falls in this range

are eliminated from the failure analysis.
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[KX] Crack Locking Region

A
/
7

L

-

Fig. 3.3 Mohr’s circle when the maximum effective stress is
equal to zero.
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12

10 s

Ro

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Fig. 3.4 The principal stress ratio as a function of the
internal friction coefficient when the maximum
effective stress is equal to zero.

1.6
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2. Tension

When the normal stress is greater than or equal to zero
everywhere or 0 £ oy < 915 %emax is determined using the
strain-energy release rate fracture criteria. As was
discussed in Chapter II, the maximum effective stress is
equal to the maximum principal stress. Mohr’s circle is

tangent to the fracture envelope at o, = 0y as shown in

Fig. 3.5.

3. Tension and compression combined

The maximum effective stress has been determined if the
normal stress is either tensile or compressive for any crack
orientation. VWhen o3 < 0« gy both of the fracture
criteria must be considered to find ¢ The value of

emax’
o is governed by:

emax
a. Compressive criterion.
b. A transition region between tensile and compressive
criteria.
c. Tensile criterion.

depending on the ratio of minimum to maximum principal

stress.

a. Compressive criteria.

The maximum effective stress will be located at
B = ﬂmax as long as the normal stress at that orientation is
compressive. The normal stress at the orientation of

maximum effective stress, § = ﬂmax is given by eq. 3.3:
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emax

Fig. 3.5 The maximum effective stress is equal to the
maximum principal stress.
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o +0 o, -0
_ 1773 173
o, = ) + ) cos 2ﬂmax 3.9

To determine when the normal stress changes from compressive
to tensile, let o, = O and substitute eq. 3.6 into 3.9 which
gives:
2\1/2
g (14622 4

= -RO 3.10

wvhere RO is defined as the principal stress ratio when

Temax = ©° If B < -RO the maximum effective stress is given
R . .

by eq. 3.7 because o, < 0 at ﬂmax’ or Mohr’s circle is

tangent to the linear portion of the fracture envelope as

shown in Fig. 3.6.

b. The transition between tensile and compressive criteria
If the normal stress at g = ﬂmax is tensile the maximum

effective stress may occur at the angle which separates the

tensile and compressive fields or o = 0. Let g = ﬂo at

o =0 from eq. 3.6

n
-1 |71%73
28, = cos - 3.11
0 [01-03}
then the shear 1is:
71793

Uemax = TO -——2— sin 2ﬂ0 3.12
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Fig. 3.6 The maximum effective stress as Mohr’s circle is
tangent to the linear portion of the fracture
envelope with a tensile principal stress.
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where 7o is the magnitude of the shear stress at o, = 0.

Fig. 3.7 shows an example of a state of stress where

Cemax = 70 The maximum effective stress will be equal to
Ty aS long as Tg > 01+ To = Op>» if oy = -0g, then
Cemax = 7o OVer the range: -R, <R < -1.

c. Tensile criterion.
Vhen the tensile stress dominates, the maximum

effective stress is equal to gy as it does when oy is always

tensile. For |og| < 0q, @ = o, as shown in Fig. 3.8. A

emax
summary of the maximum effective stress for different stress

states is given in Table 3.1.
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Fig. 3.7 The maximum effective stress as Mohr’s circle is
tangent to the the fracture envelope at o, = 0.
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‘emeax

Fig. 3.8 The maximum effective stress equal to the
maximum principal stress.



Table 3.1 The maximum effective stress for ratios of
principal stress.

Stress State % emax T1llustration
1. 0 £ g < oy oy Fig. 3.5
2. og < 0« 74

log] < 74 74 Fig. 3.8
73 .
R < 7 < -1 7o Fig. 3.7
o g, -0 og,+0
3 1 73 173 .
;I < R, 1+ 4 5 + b = Fig. 3.6
3. o3 < g, <0
o g,-0 g,+0
1 1 .
R0<-5_:—;- 1+ p —2—3+y—2—§ Fig. 3.2
73 .
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B. Fracture Prediction
The probability of failure for an element whose stress

state is assumed constant is given by eq. 2.57 as:

m, 1 ma-l
Pfa =1 - exp 'AmakBaaemax IO w Scr dScr 3.13

for surface elements and by eq. 2.60 as:

m, (7/2 (1 _ m -1
va =1 - exp 'vmkavUemax JO JO w sin a Scr dScrda
3.14

for volume elements, where o4 is replaced by ¢ then

wmax?

eémax

and w is the probability that a crack will be oriented so
that the effective stress is greater than or equal to the
critical stress formulated using the appropriate fracture
criterion. w will be a function of two angles ﬂl and ﬂ2 and

is expressed as:

—  2(By-8y)
= —-’_—-

w 3.15

As is the case for the maximum effective stress, w is

dependent on the nature of the stress on an element and is
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different for the normal stress which is compressive,

tensile or compressive and tensile combined.

1. Compressive loading.
w is reformulated using the fracture criterion for

o, < 0, given in eq. 3.2. Substituting

= |Ul2 - aﬁ

into eq. 3.2 gives:

oo = ||¢r|2 - 03 + poy 3.16

Using the notation given in Table 3.2 for surface or volume

analysis, eq. 3.16 becomes:

Se = |T - S2 + uS 3.17

which may be written:
(S, - wS)? =1 - 82
or

52 - 2485 + (1+44%)s% - T = 0 3.18
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Table 3.2 Notation for volume and surface flaw

analysis.
Quantity Symbol Surface Volume
o o
Normal Stress S = na > nv
emax emax
2 2
Tracts T | o, loy]
raction 0——-7 i 5
emax emax
Ocr
Critical Stress SCr >
emax
. 2
Critical Stress(Squared) T.r cr
% emax
Te
Effective Stress Se ~
emax
o o
Normal Stress at A SA la nd
aema.x aemax
o o
Normal Stress at B SB = 3a = nB
emax emax
Tracti A T "1a L\
raction at A . ;f"’?
emax emax
Tracts B T o350 | o
raction at B ;———5 ;———5
emax emax
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The traction and the normal stress are:

-
n

Tg + (T4-Tg) coszﬂ 3.19

wnn
|

= Sp + (5,-Sp) cos?s 3.20
Substituting egs. 3.19 and 3.20 into eq. 3.18 gives:

2 2
Se - 2ySeSB - 2pSe(SA-SB)cos B
+ (1+p2)S§ + 2(1+p2)SB(SA-SB)cos2ﬂ + (1+p2)(SA-SB)2cos4ﬂ

2
At Se = Scr’ B = ﬁcr and eq. 3.21 may be rewritten:
a62 +bf+c=0

where 6 = cos2ﬂ then

cr’?

©
]

(1+42) (5,-Sp)2
-24S__(S,-Sp) + 2(1+4%)Sp(8,-Sp) - (T,-Tp)

2\ a2
c = TCr - 2pSchB + (1+p )SB - Tp

then using the quadratic formula:

5 = -b % bE - 4ac

2a
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where 6 has two roots, 6, and §,. Se > S.p over the

interval B, < B < Boo- w is given as:

2(Bro-Beq)
o=tz 0 ) 3.22
where
=0 b2 - 4ac < O

then 0 { w £ 1. The region inside Mohr’s circle and outside
of the fracture envelope represents orientations within
which cracks must lie in order to initiate fracture as shown
in Fig. 3.9. An example of the solid angle ﬁ on a unit

sphere for volume distributed cracks is shown in Fig. 3.10.
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7]
A
i T ! \l > on
O3 2 O10%cr

Fig. 3.9 Orientation of cracks which will initiate fracture
on Mohr’s circle of stress.
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Fig. 3.10 Solid angle within which cracks must be oriented
to initiate fracture on a unit sphere.



2. Tensile loading

The probability of failure for surface and volume
elements under tensile loading is discussed in Chapter II.
To use the general formula for w given by eq. 3.15, let

ﬂl = 0 and ﬂ2 = ﬂT where

ﬂT =0 TA < Tcr
T. -T
_ -1|7cr "B
ﬂT = CO0S [TA__TE} TB < TCI' < TA 3.23
Pr = /2 Ter £ Tp

TA’ TB and TCr are defined in Table 3.2 and ﬂT = ﬂcr as
given by eq. 2.12 for surface elements and eq. 2.34 for

volume elements.

3. Combined tensile and compressive loading

In order to compute w for elements whose loading is
both tensile and compressive, the two fracture criteria are
needed. The tensile criterion as given by eq. 2.26 is

expressed using the notation in Table 3.2 as:

1/2 2,11/2
s, = TV/2 = [15 + (T,-Tp)cos2g1/ 3.23
and the compressive criterion is given by eq. 3.17. The
range over which the effective stress is greater than or

equal to the critical stress is B, < B X< By, vhere B, and B,
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are equal to the appropriate combination of ﬁT, ﬂCl or ﬁC2‘
To determine that combination each criterion must be
considered separately. The effective stress, Se’ as a
function of B is shown in Fig. 3.11a for the tensile region
and Fig. 3.11b f&f the compressive region.

ﬂl and ﬁ2 are dependent on the maximum effective stress
for either criteria and whether the normal stress is tensile
or compressive at that point. For any orientation (a,f) the
maximum effective stress is located in the 13-plane,
a = r/2. VWhen a # 7/2, the maximum effective stress is not
so easily defined. For the tensile criterion the maximum

1/2 1/2, whichever is

effective stress is equal to TA or TB
larger.

For the compressive criterion, the maximum effective
stress is determined using Fig. 3.12. Fig. 3.12 shows
Mohr’s circle relative to a line whose slope is the same as
the linear portion of the fracture envelope. By definition,
Mohr’s circle for the 13-plane has its center at point 0, or
the average of the minimum and the maximum principal
stresses. As a is constant from A to B, (shown in Fig. 2.4)
the normal and shear stress (an,r) comprise an arc of a
circle which is concentric with Mohr’s circle for the
13-plane. The stress (an,f) at the orientation of maximum

effective stress will be located on the line UP as shown in

Fig. 3.12 or the point on the arc closest to the line UP.
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g (rad)

a) TENSILE CRITERION

b) COMPRESSIVE CRITERION

-~

Fig. 3.11 The effective stress as a function of crack
orientation for A)tensile and b)compressive
loading.
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a is constant

Fig. 3.12 Mohr’s circle with the shear as a function of the
normal stress for constant a.
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The normal stress along UP as a function of a is:

g1+03
Oom = Ra cos 2ﬂmax + —5— 3.24

where Ra is the radius of the circle on which the arc AB

lies and cos 28

hax 1S given by eq. 3.6. If o g < oom < LT

the maximum effective stress is located where o = %om which

is on the line UP. The shear is:
|7nl = By sin 28, . 3.25
where sin 2ﬂmax is given by eq. 3.6. The maximum effective

stress is found by substituting eq. 3.24 and 3.25 into
eq. 3.2

014'03
Uem=|1+ﬂ Ra+ﬂ—-—2——' 3.26

R, = (01-03)/2 if a

/2 then Tem = %emax 10T the 13-plane

as given by eq. 3.7 If ¢

B 2 0, the maximum effective

stress occurs when ¢, = o p and when o > oA T is 2

maximum when o = 0 ,. For the example shown in Fig. 3.12

as a approaches zero, 7B 2 Oom® the maximum effective

stress occurs at g = /2.
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The angles ﬂl and ﬂ2 are defined differently for:

- TA
increases
effective

- TA
increases
effective

- TA
increases
effective

- TA
increases

effective

2 Ty and o 2 0, The traction is decreasing as
and the normal stress is tensile when the
stress is maximum in compression.

> TB and Com < 0> The traction is decreasing as
and the normal stress is compressive when the
stress is maximum in compression.

< TB and %m 2 0, The traction is increasing as
and the normal stress is tensile when the
stress is maximum in compression.

< TB and om < 0s The traction is increasing as

and the normal stress is compressive when the

stress is maximum in compression.

An example of the first case T, 2 Tg and o 2 0, is

shown in Fig. 3.13.

wvhere T =

Let Se = Scr’ then ﬁl and ﬂz are:
'61 =0
_ 1/2

ﬂ2 =0 TA / < Scr y

1/2 1/2
By = Pr To 557r<TA

1/2

ﬁ2 - ﬂC2 Scr < T0

TO at g = ﬂo.
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FRACTURE CRITERIA
—e— COMBINED

.« . . TENSILE
---- COMPRESSIVE
1/2
T, “re—e—_  _____ _
// \\
T 1/e{_
0 ,’
/ .,
/ 1/2
b TB
Se
]
0 Bo /2
B (rad)

Fig. 3.13 The effective stress as a function of crack
orientation, TA > TB and Com > 0.
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The second case T, 2 Ty and ¢ < 0, is physically

impossible. Consider the fracture criterion for S < O:

se'= |T _ 82, 4S

if the traction and the normal stress are both decreasing
then the effective stress must decrease. When the traction

is increasing the effective stress may have a maximum when

S < 0.

The effective stress as a function of S for the third
case T, < Ty and o 2 0, is shown in Fig. 3.14. Let S, =

S then ﬁl and ﬂ2 are:

cr’

By =0 TOI/2 $ 8er

_ 1/2 1/2
ﬁl - ﬁT TA < Scr < T0 /
By =0 Ser & TA1/2

- 1/2
ﬂ2 =0 T0 < scr

1/2
ﬂ2=ﬂc2 S <T0/

cr
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FRACTURE CRITERIA

—e— COMBINED

- - - - TENSILE
--~- COMPRESSIVE 1/2
Ty
1/2 o
Ty 2 -
1/2
TA %
/
/
/
se
|
0 Bo /2
g (rad)

Fig. 3.14 The effective stress as a function of crack

orientation, TA < TB and om > 0.
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The effective stress as a function of B for the final
case T, < Ty and o < O, is shown in Fig. 3.15. Let S, =

S then ﬂl and ﬂ2 are:

cr?

ﬂl =0 Sem < Scr _
By = br TA1/2 < Scr < Sem

By = By Scr < TA1/2

ﬂ2 =0 em < cr

By = Bea Scr < Sem

After computing the probability of failure for an
individual element under different loading conditions, these
elements are assembled in order to analyze the failure

probability for an entire component.
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FRACTURE CRITERIA

—e— COMBINED

- - - - TENSILE
---- COMPRESSIVE 1/8
.
. -4S
el em
TO )
i/2
Se T,
|
g (rad)

Fig. 3.15 The effective stress as a function of crack

orientation, TA < TB and Tom < 0.



CHAPTER IV

SYSTEM RELTABILITY

The probability of failure for an element of area or
volume has been evaluated for tensile or compressive loading
in Chapters II and III. In compression, several cracks
extend and join together to create a shear fault as shown in
Fig. 4.1.20 To account for the multicracking phenomenon,
the material is modeled as a series system rather than
independent elements as in the weakest link theory.
Reliability analysis is used to correlate the elements and

establish bounds on the probability of failure.

A. Finite Element Analysis

This analysis presented to this point has been
concerned with evaluating the probability of failure within
an element of area or volume where the stress state is
assumed constant. To evaluate these stresses the finite
element method is used. An element of volume or surface is
not the same as an element in "finite elément", because its

stress distribution may not be assumed constant. The finite
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Fig. 4.1 The joining of several cracks to create a shear
fault under compressive loading.



(i

element must be divided into sub-elements so that the
constant stress assumption is valid. The number of
subdivisions is governed by the number of locations at which
the stress is output from the finite element program.

Along with the-stress at each one of these locations,
the area or volume of that sub-element is determined.
Finite element analysis makes use of isoparametric elements
within which the displacements are formulated using
interpolation functions.27 These interpolation functions
enable an element of arbitrary éhape in the global
coordinate system to be mapped into a natural coordinate
system over which the calculations are carried out. The
global coordinate system (x,y,z) is representative of the
physical system. The natural coordinate system (r,s,t) is
constructed so that -1 {r <1, -1 {s<1and -1 <t<1,
The volume of an element is determined using the Jacobian

matrix

[ ox 9z
or or
_ ox 0z
[J] = s B B 4.1
ax 0z
-R R-

where for an element with N nodes:

oh. (r,s,t)
= X3 4.2
or

[i2.3
= =

NN 2

i=1
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then hi is the interpolation function and x4 is the global
x-coordinate of the ith node. Each term in the Jacobian
transformation matrix is computed in the same manner and is
a function of r, s and t.

The volume of an element is given by:

JI av = jl Jl Jl I[J]I dr ds dt 4.3
v 171 T

wvhich may be evaluated numerically using eq. 2.55:

I J K
IJJ dv = 2 2 2 l[J(ri,sj,tk)] Vi¥5Vk 4.4
\'

i=1 j=1 k=1

vhere I, J and K are the number of integration points in the
r, s and t directions, respectively. The volume of a

sub-element is:

where Wi Vs and vy are the weights associated with each
sampling point. The number of sub-elements will be equal to
the number of integration points used for the element. This
technique is appropriate if the stress has been output at
the integration points.

The area of a sub-element is determined in the same

manner:
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A= [J(ri,sj)] ViV 4.6

vhere the Jacobian as given by eq. 4.1 is reduced to a 2x2
matrix.
B. Reliability Bounds

Bounds on the probability of failure are determined by
considering the elements of a component and their
relationship to one another. Before that relationship can
be found, the method over which the entire component fails
is determined. The fracture of a brittle material will
occur when a crack in any part of the component fractures.

This weakest link hypothesis is an example of a series
system which is defined in the following way. The component
or structure is considered at a fixed point in time, the
status of that structure (functioning/failed) is dependent
on the states of its elements. The state of an individual

elements is expressed in terms of two binary variables,

A and B:

1 if element i is functioning
0O if element i has failed

where i ranges from 1 to k and k is the number of elements

in the component. The state of the structure is:

1 if the structure is functioning

-
]

Bs =1 - As 4.8
0 if the structure has failed




where As for a series system is a function of all of its

elements and is given as:

A = AjAy...A. = min Al..:Ak' 4.9
Substituting eq. 4.8 into 4.9 gives:
AS = A1A2 .Ak‘l - A1A2-.-Ak_1Bk
Repeating this operation yields:
B, =B, + A\B, + AjAgBy + ...+ AjA,... A 4B 4.10

Since the state variables can only take on values of zero or

one, it follows that:
AjAy. . Ay 2 max|l - (B1 + By + ...+ Bi),O]

which when combined with eq. 4.10 leads to:

k i-1
B, 2B, + ) max|B, - ) B;B;,0 4.11
i=2 j=1
For any j<i it also follows that:
AAj...A. <A, =1 - B, 4.12

172 i-=73 J
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combining eq. 4.10 and 4.12

k

k
B, < ) B, + max BB, 4.13
i=1 i=2 J

Bounds on BS are given by eqs. 4.11 and 4.13 or

k i-1 k
B, + ) max|B;- ) B;B;,0| < By < Y B - ) max BiB; 4.14
i=2 j=2 i=1 i=2 J

h‘

Ditlevsen bounds on Pf are similar to the bounds on Bs

as given by eq. 4.1428

*‘

i-1 k
max|P, - z Pij’o SPe z P, - 2 gii Pij 4.15
2 j= i=1 i=2 J

e

[y

+
Ul B

i

wvhere Pi is the probability of failure of an individual
element, assembled in decreasing order and Pij is the joint
probability of failure of elements i and j. P, is equal to
the probability of failure for the element with the highest
probability of failure. Pij is formulated for simplicity as

a function of the safety indices ﬂi and ﬂj, given by

P
Pij = Pin + IO ¢(-ﬂi,-ﬂj:z) dz 4.16

where
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2 . .2
1 1 - 2xy
p(x,y:p) = exp | - 5 T4 £

2r {1 - 2 21

p is the correlation coefficient and the safety index ﬂi =
-¢'1(Pi) is a normally distributed function. The
probability of failure as a function of the safety index is
shown in Fig. 4.2.

If the correlation coefficient p is equal to zero, the
elements are not correlated and if p = 1 they are fully
correlated. VWhen p is equal to one, a k series system is
modeled as one single element whose probability of failure
is the average of the k elements.

In order to minimize the size of the problem, the
weakest link model is used to combine the sub-elements
within an element so that the element may be used to
determine the reliability bounds.

The probability of survival is:

then the probability of survival for the element is:
N
P =11 P 4.17

where N is the number of sub-elements within an element.
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Fig. 4.2 The probability of failure as a function of the
reliability index.




CHAPTER V

APPLICATION TO CONTACT STRESS PROBLEMS

The preceding theory is used to evaluate the
probability of failure for an alumina ceramic under two
different contact stress conditions. First, pressure is
applied to two cylinders in contact and second, a
compressive load is applied to a beam with a machined notch.
The second example is a model of a test conducted at
NASA Lewis Research Center where a compressive load was
applied to a sample with a machined notch in order to
initiate a pre-crack for subsequent studies on fracture
toughness. For the first example the stress distribution in
closed form is known.2Y However, in general the
displacements and stresses are found using the ADINA finite
element program.30

The material chosen was a 967 alumina ceramic which was
used in the experiments at NASA. Three-point bend test data
on a beam of circular cross-section was available in the

31

literature””™ and is given in Table 5.1.
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TABLE 5.1 Fracture stresses and failure probabilities
for 3-point bend specimens.

Fracture Stress Probability of Failure
o, (MPa) ' P
f f
378 0.048
417 0.095
421 0.143
430 0.190
448 0.238
453 0.286
455 0.333
457 0.381
461 0.429
470 0.476
472 0.524
475 0.571
479 0.619
493 0.667
495 0.714
497 0.762
502 0.810
528 0.857
532 0.905
540 0.952

The 4-point bend test is preferred because the shear stress
between the inner loads is zero. However, the
length-to-radius ratio for this beam was large enough so the
maximum shear is an order of magnitude less than the maximum
normal stress, and is therefore, neglected. The material
parameters are calculated from this data and are given in
Table 5.2. The dimensions of the beam are given,32 k and m
are calculated using the least squares method and kBa and
ka are determined using the technique described in

Chapter II.
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Table 5.2 Alumina test data.

B = 0.0016 m

L, = 0.0254 m

L, = 0. (3-point bend)

m=12.2

k = 1.80 x 10733 ypa~12-2
kp, = 3.99 x 10727 ypa 1222
kg, = 9.72 x 10723 ypa 12253

The last material parameter necessary for this analysis
is the internal friction coefficient. An exact value for
this quantity is not known and it must be approximated. The
internal friction coefficient is defined as being equal to
the slope of the fracture envelope. VWhen the tensile and
compressive strengths are known, using simple geometry the
friction coefficient is calculated. Using the bend strength
of alumina, 315 MPa (45 ksi), and the compressive strength,
2,625 MPa (375 ksi), the internal friction coefficient, 4,

is determined and is equal to 1.27.
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A. Two Cylinders In Contact

Vhen pressure is applied to two cylinders in contact,
(bearings), the region beneath the load is subjected to high
compressive stresses. If the displacement in the contact
region is assumed to be uniform, a closed form solution for
the stress distribution can be found assuming a
semi-infinite region.29 A schematic representation of the
applied load on the surface is shown in Fig. 5.1a where Po
is the maximum pressure at the center of the contact area
and a is the half-width of the contact area. The maximum

pressure is:

po = — 5.1

wvhere p is the applied load and L is the length of the
cylinder. The half-width of the contact area is:

2pA
a= |— 5.2
xL
wvhere
2 2
1 1-v 1-v
A= 1, 2




88

A
)
h 4
A
™
A 4

a) The normel and shear load on the boundary

b) Mesh

Fig. 5.1 Schematic view of a contact stress distribution
on a semi-infinite region.
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where Rl’ vy and E1 are the radius, Poisson’s ratio and
Young’s modulus of the first cylinder and R2, vy and E2 are
respective properties of the second cylinder.

A closed form solution is available for this loading
coﬁfiguration, in order to evaluate the failure probability,
the stress and the volume/area at discrete points is needed.
The mesh used to divide the contact region is shown in
Fig. 5.1b. The stress is evaluated at the center of each
element. The rectangular area is easily determined,
however, as the load increases the width of the contact area
increases. To compensate for this increase, the volume/area

is calculated as the load increases using eqs. 5.1 and 5.2

a = — a. 5.3

where Pg is the initial maximum pressure and ay is the
' i

corresponding half-width of the contact area. The initial
load along with the bearing dimensions are given in

Table 5.3.
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Table 5.3 Bearing material properties and loading

configuration.
Dimensions
Rl = R2 =0.01m .
L=0.01m

Material properties

= 280,000 MPa
0.25

A
-

|

A
NN

[

Initial loading condition

p; = 82.5 N
a; = 1.875 x 102 m
Py, = 280 MPa

A contour map of the maximum effective stress
normalized with respect to the maximum pressure is shown in
Fig. 5.2. The maximum effective stress is less than zero in
the region directly beneath the load. Any cracks located in
this area will lock. All cracks on the surface will also
lock. The maximum effective stress increases away from the
load and away from the surface. The highest fracture
probabilities can be expected to occur near the locations of
largest maximum effective stress.

The probability of failure as a function of the maximum
contact pressure is shown in Fig. 5.3. Bounds on the
probability of failure are shown for three different

correlation coefficients, p = 0, p =1 and p = p(rij). WVhen
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Fig. 5.2 Contours of the maximum effective stress for
normal loading only.
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Fig. 5.3 Bounds on the probability of failure as a
function of the normalized maximum pressure for
different correlation coefficients. :
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the elements are not correlated, p = 0, the weakest link
probability lies within the Ditlevsen bounds. However, when
the system is fully correlated, the probability of failure
is substantly lower than the weakest link probability, for a
given load. This would indicate that for the whole system
to fail more than one element needs to fail. An

intermediate correlation function was assumed:

pij

I
1
o]
o
]
}—‘H
e
t
(g}
| D
a]
(g]

5.4

where rij is the distance between the centroids of two
elements i and j and ¢ is a constant, usually the average
mesh size. This correlation is the most realistic because p
is equal to one for two adjacent elements and decreases as
the distance between elements increases. For this example c
was assumed to be equal to one quarter of the width of the
contact area or a/2.

The purpose of establishing bounds on the probability
of failure is to bracket a narrow range of expected failure
probabilities for a given load. Reliability bounds are
consistently used for design purposes where Pf << 1. As the
difference between bounds increases, generally with
increasing load, they are not useful for a realistic
bounding of the probability of failure. For example, for

p = 0, as the probability of failure exceeds 0.5, the
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difference between the bounds increase sharply and the
concept of probability of failure is no longer important
because failure has occurred.

The largest failure probabilities occur in the area in
which the maximum effective stress is greatest as shown by
Fig. 5.4, a contour map of failure probabilities for each
element. The normalized maximum pressure was 0.0165 when
the map was drawn. A crack is most likely to propagate
initially in the region of highest maximum effective stress.
In practice, cracks originate beneath the surface and then
grow around the inside of the bearing parallel to the
surface and ultimately, the material peels off. This
phenomenon is known as the shell effect.

In the case of roller bearings, a frictional force is
acting on the surface ‘in the direction opposite to the
relative motion. The tangential load is represented as a

fraction of the pressure or

q = fp 5-5

where f is the friction coefficient and p is the pressure.
A contour map of the maximum effective stress nofmalized
with respect to the maximum pressure for a friction
coefficient equal to 0.3 is shown in Fig. 5.5.

As was the case when no friction is present craéks will
lock in the area directly below the load. On the surface

near the trailing edge of the tangential load the normal
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Fig. 5.4 Contour of the failure probabilities for each
element.
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Fig. 5.5 Contours of the maximum effective stress for
normal and tangential loading.
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stresses are tensile. The maximum effective stress in this
area is the largest for the entire map. This dominate area
will serve as the most likely place for the propagation of
existing cracks. Another maximum on the map also occurs at
the leading edge of the load. However; it is not large
enough to suspect that failure will occur at that point.

The probability of failure as a function of the
normalized maximum pressure is shown in Fig. 5.6. The
probability of failure for the entire cylinder is
approximately equal to the probability of failure of the
element where the maximum effective stress is the highest.
The upper and lower bound will converge to that value and
are not dependent on the correlation coefficient. Fig. 5.7
shows a contour map of the failure probabilities for each
element. A comparison of Figs. 5.5 and 5.7 shows that the
region of the highest maximum effective stress is also the
region where the probability of failure is the highest.

The probability of failure as a function of maximum
normalized pressure is shown in Fig. 5.8 for different
friction coefficients. As the friction coefficient
increases the tensile stresses near the trailing edge become
dominant and the failure probability increases dramatically

for a given load.



1.0

Fig. 5.6
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The probability of failure as a function of the
maximum normalized pressure with normal and
tangential loading.
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Fig. 5.7 Contour of the failure probabilities for each
element.
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B. Notched Beam

A test conducted at NASA Lewis Research Center whose
purpose was to initiate a pre-crack for subsequent studies
on fracture toughness involved applying a compressive load
to a beam with a machined notch. The material chosen was a
967 alumina ceramic whose failure data was available in the
literature31 and is given in Table 5.1. The failure
stresses found as a result of this analysis are not those
expected for this experiment because the sample was fatigued

5 cycles before failure occurred. The

for approximately 10
purposes of this study were: to determine the location of
failure, to define a loading limit under which failure will
occur and to suggest a test configuration wherein a single
crack grows under compressive loading at the base of the
notch.

A schematic showing the beams shape and loading
condition is given in Fig. 5.9, where its height,
h =2.5 cm, width, w = 5.0 cm. and the thickness,
t = 1.0 cm. The test configuration changed during the
course of the experiment. The variable quantities were: the
length of the notch, a, the length over which the load is
applied, 1, and the distance between the back edge of the
sample and the point of applied load, d.

Initially, the material was loaded across the entire
surface or d = 0, 1 = w and a = 2.7 cm. A crack was

expected to grow at the base of the notch. Fig. 5.10 is a
photograph of the beam at failure. After initial small
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Fig. 5.9 Schematic of the loads applied to the notched
beam.
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Fig. 5.10 Tensile crack in the notched beam loaded across
its entire width.



crack growth at the base of the notch, a second dominant
crack originates at the top of the beam. The beam fails in
tension. When loading the specimen over three-fourths of
its width, ultimate failure still occurs in the form of a
tensile crack as shown in Fig. 5.11.

A failure analysis on the beam was conducted by the
author in order to determine if the mode of failure was
justifyable. The finite element mesh is shown in Fig. 5.12.
Because the beam is symmetric about its central axis, only
half of the sample was modeled, however the entire beam is
considered in the reliability analysis. The finite element
model consists of 63 eight-node quadrilateral elements
(plane-strain), 230 nodes and 442 nodal degrees of freedom.

After the displacements and stresses were analyzed
using ADINA, the stresses and volumes are extracted from the
output file and the failure for each element is determined.
Vhen the weakest link probability of failure is equal to
0.99, a contour map of the element probabilities of failure
is drawn. The map for the beam loaded over its entire width
is shown in Fig. 5.13. The element with the highest failure
probability is located at the notch tip. However, almost
directly above this element at the top of the beam, the
region of highest tensile stress is located. The
probability of failure in this region is significant in
comparison with the failure probability at the notch tip.

This explains the results of the actual experiment.

The crack growth initiating at the notch tip is shown by the
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Fig. 5.11 Tensile crack in the notched beam loaded across
three quarters of its entire width.
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Fig. 5.12 Discretization of the notched beam.
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Fig. 5.13 Contour map of the probabilities of failure for
the beam loaded over its entire width. -



108

highest probability of failure occurring at that location.
Due to the nature of brittle fracture in compression, the
crack growth was local. As additional load is applied, the
regions of tensile stress will dominate. The tensile crack
wvhich breaks the sample is initiated at the top.

Another test was conducted under the following
conditions: a = 2.7 cm, 1 = 1.12 cm, and w = 1.4 cm. The
results of the experiment show that a dominant crack
initiates in the region of tensile stress. A photograph of
that crack is shown in Fig. 5.14. A small crack is
initiated at the base of the notch in compression with
ultimate failure caused by the tensile crack.

When the weakest link probability of failure is equal
to 0.99, a contour map of the failure probabilities for
individual elements is shown in Fig. 5.15. The probability
of failure is the largest for the element at the notch tip,
however at the top of the beam away from the notch, the
probability of failure is significant for the tensile stress
region.

Fig. 5.16 shows the probability of failure as a
function of the applied load. The weakest link probability
is shown along with the bounds for three correlation
coefficients, p =0, p =1 and p = p(rij) as given by
eq. 5.4 with ¢ = 0.3 cm. VWhen the elements are not
correlated, p = O, the weakest link probability is
approximately equal to the Ditlevsen bound, yielding a

unique solution. However, when the system is fully
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correlated, the difference between the bounds is substantly
greater than for an uncorrelated system. The spread between
the bounds for the intermediate correlation coefficient lies
between that for a fully correlated and uncorrelated system
for a given load. These trends are the same as those found
for the cylinders in contact as given by Fig. 5.3.

Vith an applied load of 44.5 kN (10,000 1bs) the
tensile crack appears after 97,320 cycles. This load is
approximately 807 of the load required to yield a
probability of failure of 0.01 for the weakest link model as
shown in Fig. 5.16.

In order to determine a test configuration wherein a
crack grows at the base of the notch, a sensitivity study of
the possible loading configurations was completed. With the
beams height to width ratio of 0.5, an improved test
condition was not found. However, if the height was
doubled, the tensile stresses away from the notch decrease.
Then the probability of failure in these regions will
decrease. A contour map of the probabilities of failure of
a beam loaded as follows: a = 2.7 cm, 1 = 1.12 cm, and
w = 1.4 cm is shown in Fig. 5.17. The height of this
specimen is doubled, h = 5.0 cm. The probability of failure
in the elements away from the notch tip has decreased.

The probability of failure as a function of the applied
load for the two different heights(identical loading
conditions), is shown in Fig. 5.18. For a given load the

failure probability decreases for the beam with h = 5.0 cm.

PRECEDING PAGE BLANK NOT FiLMED
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Fig. 5.17 Contour map of the probabilities of failure for
the beam loaded over a section of its entire
width where the height is doubled.



114

h=2.5cm

h=5.0cm

.00

P (KN)

Fig. 5.18 The weakest link probability of failure as a
function of the applied load for different
beam heights.
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The tensile stress in the beam decreases. The volume or the
surface area increases for the beam whose height is greater.
The combined effect of the two results is the lowering of
the probability of failure at a given load for the beam
which is larger.

In conclusion, after analyzing the probability of
failure for different loading conditions and beam heights,
the configuration which would most likely result in crack
growth at the notch tip and not in tension is given in
Table 5.4. Since the probability of failure decreased for
this specimen at a given load, the load which was applied in
the earlier experiments may be increased slightly or the
number of cycles needed for compressive failure at the notch
tip may be increased without the risk of remote tensile

failure.

Table 5.4 Dimensions and loading condition of the
notched beam.

Dimensions
width = 5.0 cm (1.92 in.
height = 5.0 cm (1.92 in.
thickness = 1.0 cm (0.40 in.
a = 2.7 cm (1.064 in.)

Loading condition

d =1.12 cm (0.44 in.
1 = 1.40 cm (0.55 in.
Applied load = 44.5 kN (10,000 1bs)



CHAPTER VI

CONCLUSIONS

A. Summary

The objective of this study was to analyze the
reliability of brittle materials under contact stress
conditions. The analysis has shown the following
conclusions:

- The failure of brittle materials whose compressive
strength is much larger than its tensile strength, is
analyzed using a Batdorf model modified to include the
reduction in shear due to the effect of the compressive
stresses on the crack face.

- Fracture of brittle materials is modeled as a series
system.

- As the system becomes more fully correlated the
probability of failure decreases for a given load.

- The spread of the bounds increases as the correlation
coefficient increases.

- The nature of brittle crack growth in compression
results in local crack growth. The presence of a similar

crack in tension will lead to catastrophic failure. Failure

116
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of brittle materials is biased in tension.
- The probability of failure is largest in the regions

where the maximum effective stress is greatest.

B. Further VWork

- A reliability analysis including both the effect of
the shear and crushing compressive crack growth mechanisms
should be considered.

- An experimental study should be conducted to
determine the internal friction coefficient as it relates to
characterizing the crack density function for brittle
materials.

- Nonlinear fracture envelopes should be applied in
examining the reliability of brittle materials under

compressive loading.
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